Tibetan Plateau

Tibetan Plateau
青藏高原 (Qīng–Zàng Gāoyuán, Qinghai–Tibet Plateau)
Himalaya composite.jpg
The Tibetan Plateau lies between the Himalayan range to the south and the Taklamakan Desert to the north. (Composite image)
Length2,500 km (1,600 mi)
Width1,000 km (620 mi)
Area2,500,000 km2 (970,000 sq mi)
Tibet and surrounding areas topographic map.png
(c) The author of the work
and GLOBE and ETOPO1
(see above and the Source section), CC BY-SA 4.0
Tibetan Plateau and surrounding areas above 1600 m
LocationChina (Tibet, Qinghai, Western Sichuan, Northern Yunnan, Southern Xinjiang, Western Gansu)
India (Ladakh, Lahaul & Spiti, Northern Arunachal Pradesh, Northern Sikkim)
Pakistan (Baltistan)
Nepal (Northern Nepal)
Tajikistan (Eastern Tajikistan)
Kyrgyzstan (Southern Kyrgyzstan)
Range coordinates33°N 88°E / 33°N 88°E / 33; 88Coordinates:33°N 88°E / 33°N 88°E / 33; 88

The Tibetan Plateau (Tibetan:བོད་ས་མཐོ།, Wylie: bod sa mtho), also known as the Qinghai–Tibet Plateau[1] or the Qing–Zang Plateau[2] (Chinese: 青藏高原; pinyin: Qīng–Zàng Gāoyuán) or as the Himalayan Plateau in India,[3][4] is a vast elevated plateau in South Asia, Central Asia[5][6][7][8] and East Asia,[9][10][11][12] covering most of the Tibet Autonomous Region, most of Qinghai, Northwestern Yunnan, Western half of Sichuan, Southern Gansu provinces in Western China, southern Xinjiang, the Indian regions of Ladakh and Lahaul and Spiti (Himachal Pradesh) as well as Gilgit-Baltistan in Pakistan, Bhutan, northern Nepal, eastern Tajikistan and southern Kyrgyzstan. It stretches approximately 1,000 kilometres (620 mi) north to south and 2,500 kilometres (1,600 mi) east to west. It is the world's highest and largest plateau above sea level, with an area of 2,500,000 square kilometres (970,000 sq mi) (about five times the size of Metropolitan France).[13] With an average elevation exceeding 4,500 metres (14,800 ft) and being surrounded by imposing mountain ranges that harbor the world's two highest summits, Mount Everest and K2, the Tibetan Plateau is often referred to as "the Roof of the World".

The Tibetan Plateau contains the headwaters of the drainage basins of most of the streams in surrounding regions. Its tens of thousands of glaciers and other geographical and ecological features serve as a "water tower" storing water and maintaining flow. It is sometimes termed the Third Pole because its ice fields contain the largest reserve of fresh water outside the polar regions. The impact of speculated climate change on the Tibetan Plateau is of ongoing scientific interest.[14][15][16][17]


The Tibetan Plateau is surrounded by the massive mountain ranges[18] of high-mountain Asia. The plateau is bordered to the south by the inner Himalayan range, to the north by the Kunlun Mountains, which separate it from the Tarim Basin, and to the northeast by the Qilian Mountains, which separate the plateau from the Hexi Corridor and Gobi Desert. To the east and southeast the plateau gives way to the forested gorge and ridge geography of the mountainous headwaters of the Salween, Mekong, and Yangtze rivers in northwest Yunnan and western Sichuan (the Hengduan Mountains). In the west, the curve of the rugged Karakoram range of northern Kashmir embraces the plateau. The Indus River originates in the western Tibetan Plateau in the vicinity of Lake Manasarovar.

Tibetan Buddhist stupa and houses outside the town of Ngawa, on the Tibetan Plateau.

The Tibetan Plateau is bounded in the north by a broad escarpment where the altitude drops from around 5,000 metres (16,000 ft) to 1,500 metres (4,900 ft) over a horizontal distance of less than 150 kilometres (93 mi). Along the escarpment is a range of mountains. In the west, the Kunlun Mountains separate the plateau from the Tarim Basin. About halfway across the Tarim the bounding range becomes the Altyn-Tagh and the Kunluns, by convention, continue somewhat to the south. In the 'V' formed by this split is the western part of the Qaidam Basin. The Altyn-Tagh ends near the Dangjin pass on the DunhuangGolmud road. To the west are short ranges called the Danghe, Yema, Shule, and Tulai Nanshans. The easternmost range is the Qilian Mountains. The line of mountains continues east of the plateau as the Qinling, which separates the Ordos Plateau from Sichuan. North of the mountains runs the Gansu or Hexi Corridor which was the main silk-road route from China proper to the West.

The plateau is a high-altitude arid steppe interspersed with mountain ranges and large brackish lakes. Annual precipitation ranges from 100 to 300 millimetres (3.9 to 11.8 in) and falls mainly as hail. The southern and eastern edges of the steppe have grasslands that can sustainably support populations of nomadic herdsmen, although frost occurs for six months of the year. Permafrost occurs over extensive parts of the plateau. Proceeding to the north and northwest, the plateau becomes progressively higher, colder, and drier, until reaching the remote Changtang region in the northwestern part of the plateau. Here the average altitude exceeds 5,000 metres (16,000 ft) and winter temperatures can drop to −40 °C (−40 °F). As a result of this extremely inhospitable environment, the Changthang region (together with the adjoining Kekexili region) is the least populous region in Asia and the third least populous area in the world after Antarctica and northern Greenland.

NASA satellite image of the south-eastern area of Tibetan Plateau. Brahmaputra River is in the lower right.

Geology and geological history

Yamdrok Lake is one of the three largest sacred lakes in Tibet.

The geological history of the Tibetan Plateau is closely related to that of the Himalayas. The Himalayas belong to the Alpine Orogeny and are therefore among the younger mountain ranges on the planet, consisting mostly of uplifted sedimentary and metamorphic rock. Their formation is a result of a continental collision or orogeny along the convergent boundary between the Indo-Australian Plate and the Eurasian Plate.

The collision began in the Upper Cretaceous period about 70 million years ago, when the north-moving Indo-Australian Plate, moving at about 15 cm (6 in) per year, collided with the Eurasian Plate. About 50 million years ago, this fast-moving Indo-Australian plate had completely closed the Tethys Ocean, the existence of which has been determined by sedimentary rocks settled on the ocean floor, and the volcanoes that fringed its edges. Since these sediments were light, they crumpled into mountain ranges rather than sinking to the floor. The Indo-Australian plate continues to be driven horizontally below the Tibetan Plateau, which forces the plateau to move upwards; the plateau is still rising at a rate of approximately 5 mm (0.2 in) per year (although erosion reduces the actual increase in height).[19]

Much of the Tibetan Plateau is of relatively low relief. The cause of this is debated among geologists. Some argue that the Tibetan Plateau is an uplifted peneplain formed at low altitude, while others argue that the low relief stems from erosion and infill of topographic depressions that occurred at already high elevations.[20]

The current tectonics of the plateau is much debated. The two end-member models are the block model, in which the crust of the plateau is formed of several blocks with little internal deformation separated by major strike-slip faults. In the alternative continuum model, the plateau is affected by distributed deformation resulting from flow within the crust.[21]


Typical landscape

The Tibetan Plateau supports a variety of ecosystems, most of them classified as montane grasslands. While parts of the plateau feature an alpine tundra-like environment, other areas feature monsoon-influenced shrublands and forests. Species diversity is generally reduced on the plateau due to the elevation and low precipitation. The Tibetan Plateau hosts the Tibetan wolf,[22] and species of snow leopard, wild yak, wild donkey, cranes, vultures, hawks, geese, snakes, and water buffalo. One notable animal is the high-altitude jumping spider, that can live at elevations of over 6,500 metres (21,300 ft).[23]

Ecoregions found on the Tibetan Plateau, as defined by the World Wide Fund for Nature, are as follows:

  • The Pamir alpine desert and tundra covers the western end of the Tibetan Plateau where it transitions to the Pamir Mountains
  • The North Tibetan Plateau-Kunlun Mountains alpine desert covers the northwestern limits of the Tibetan Plateau along the Kunlun Mountains
  • The Karakoram-West Tibetan Plateau alpine steppe covers the westernmost parts of the Tibetan Plateau and Ladakh
  • The Northwestern Himalayan alpine shrub and meadows on the edges mountains bordering the extreme west of the Tibetan Plateau
  • The Central Tibetan Plateau alpine steppe covers most of the central portions of the Tibetan Plateau and the eastern Changtang
  • The Western Himalayan alpine shrub and meadows covers the southwestern plateau in the Garuda Valley region
  • The Qaidam Basin semi-desert located in the Qaidam Basin on the northern Tibetan Plateau
  • The Qilian Mountains subalpine meadows covering the Qilian Mountains in the northernmost portions of the plateau
  • The Qilian Mountains conifer forests covering parts of the mountain ranges in the northeastern Tibetan Plateau
  • The Tibetan Plateau alpine shrub and meadows covering a swath of the central and northeastern Tibetan Plateau
  • The Yarlung Tsangpo arid steppe in the Yarlung Tsangpo River Valley, where most of the permanent human population on the Tibetan Plateau lives
  • The Eastern Himalayan alpine shrub and meadows cover the southern Tibetan Plateau on the north side of the Himalayas
  • The Southeast Tibet shrub and meadows cover the southeastern and eastern parts of the plateau and are generally rainier than the other high-altitude Tibetan Plateau regions
  • The Northeastern Himalayan subalpine conifer forests reach up mountain valleys in the southern plateau and contain some of the highest altitude forests in the world
  • The Nujiang Langcang Gorge alpine conifer and mixed forests cover the mountain valleys that reach 500 km (310 mi) into the southeastern Tibetan Plateau
  • The Hengduan Mountains subalpine conifer forests cover the southeasternmost mountain valleys on the plateau
  • The Qionglai-Minshan conifer forests cover the eastern edges of the plateau and are the densest forests to be found anywhere on the Tibetan Plateau

Human history

Pastoral nomads camping near Namtso.
Nomad camp near Tingri, Tibet. 1993

Nomads on the Tibetan Plateau and in the Himalayas are the remainders of nomadic practices historically once widespread in Asia and Africa.[24] Pastoral nomads constitute about 40% of the ethnic Tibetan population.[25] The presence of nomadic peoples on the plateau is predicated on their adaptation to survival on the world's grassland by raising livestock rather than crops, which are unsuitable to the terrain. Archaeological evidence suggests that the earliest human occupation of the plateau occurred between 30,000 and 40,000 years ago.[26] Since colonization of the Tibetan Plateau, Tibetan culture has adapted and flourished in the western, southern, and eastern regions of the plateau. The northern portion, the Changtang, is generally too high and cold to support permanent population.[27] One of the most notable civilizations to have developed on the Tibetan Plateau is the Tibetan Empire from the 7th century to the 9th century AD.

Impact on other regions

Role in monsoons

Natural-colour satellite image of the Tibetan Plateau

Monsoons are caused by the different amplitudes of surface temperature seasonal cycles between land and oceans. This differential warming occurs because heating rates differ between land and water. Ocean heating is distributed vertically through a "mixed layer" that may be 50 meters deep through the action of wind and buoyancy-generated turbulence, whereas the land surface conducts heat slowly, with the seasonal signal penetrating only a meter or so. Additionally, the specific heat capacity of liquid water is significantly greater than that of most materials that make up land. Together, these factors mean that the heat capacity of the layer participating in the seasonal cycle is much larger over the oceans than over land, with the consequence that the land warms and cools faster than the ocean. In turn, air over the land warms faster and reaches a higher temperature than does air over the ocean.[28] The warmer air over land tends to rise, creating an area of low pressure. The pressure anomaly then causes a steady wind to blow toward the land, which brings the moist air over the ocean surface with it. Rainfall is then increased by the presence of the moist ocean air. The rainfall is stimulated by a variety of mechanisms, such as low-level air being lifted upwards by mountains, surface heating, convergence at the surface, divergence aloft, or from storm-produced outflows near the surface. When such lifting occurs, the air cools due to expansion in lower pressure, which in turn produces condensation and precipitation.

In winter, the land cools off quickly, but the ocean maintains the heat longer. The hot air over the ocean rises, creating a low-pressure area and a breeze from land to ocean while a large area of drying high pressure is formed over the land, increased by wintertime cooling.[28] Monsoons are similar to sea and land breezes, a term usually referring to the localized, diurnal cycle of circulation near coastlines everywhere, but they are much larger in scale, stronger and seasonal.[29] The seasonal monsoon wind shift and weather associated with the heating and cooling of the Tibetan plateau is the strongest such monsoon on Earth.

Glaciology: the Ice Age and at present

The Himalayas as seen from space looking south from over the Tibetan Plateau.

Today, Tibet is an important heating surface of the atmosphere. However, during the Last Glacial Maximum, an approximately 2,400,000 square kilometres (930,000 sq mi) ice sheet covered the plateau.[30][31][32] Due to its great extent, this glaciation in the subtropics was an important element of radiative forcing. With a much lower latitude, the ice in Tibet reflected at least four times more radiation energy per unit area into space than ice at higher latitudes. Thus, while the modern plateau heats the overlying atmosphere, during the Last Ice Age it helped to cool it.[33]

This cooling had multiple effects on regional climate. Without the thermal low pressure caused by the heating, there was no monsoon over the Indian subcontinent. This lack of monsoon caused extensive rainfall over the Sahara, expansion of the Thar Desert, more dust deposited into the Arabian Sea, and a lowering of the biotic life zones on the Indian subcontinent. Animals responded to this shift in climate, with the Javan rusa migrating into India.[34]

In addition, the glaciers in Tibet created meltwater lakes in the Qaidam Basin, the Tarim Basin, and the Gobi Desert, despite the strong evaporation caused by the low latitude. Silt and clay from the glaciers accumulated in these lakes; when the lakes dried at the end of the ice age, the silt and clay were blown by the downslope wind off the Plateau. These airborne fine grains produced the enormous amount of loess in the Chinese lowlands.[34]

Effects of climate change

The Tibetan Plateau contains the world's third-largest store of ice. Qin Dahe, the former head of the China Meteorological Administration, issued the following assessment in 2009, though this opinion is now over a decade old:

Temperatures are rising four times faster than elsewhere in China, and the Tibetan glaciers are retreating at a higher speed than in any other part of the world. ... In the short term, this will cause lakes to expand and bring floods and mudflows. ... In the long run, the glaciers are vital lifelines for Asian rivers, including the Indus and the Ganges. Once they vanish, water supplies in those regions will be in peril.[35]

See also



  1. ^ Wang, Zhaoyin; Li, Zhiwei; Xu, Mengzhen; Yu, Guoan (30 March 2016). River Morphodynamics and Stream Ecology of the Qinghai-Tibet Plateau. CRC Press.
  2. ^ Jones, J.A.; Liu, Changming; Woo, Ming-Ko; Kung, Hsiang-Te (6 December 2012). Regional Hydrological Response to Climate Change. Springer Science & Business Media. p. 360.
  3. ^ "हिमालयी क्षेत्र में जीवन यापन पर रिसर्च करेंगे अमेरिका और भारत".
  4. ^ "In Little Tibet, a story of how displaced people rebuilt life in a distant land". 18 February 2020.
  5. ^ Illustrated Atlas of the World (1986) Rand McNally & Company.ISBN 0-528-83190-9 pp. 164–65
  6. ^ Atlas of World History (1998 ) HarperCollins.ISBN 0-7230-1025-0 p. 39
  7. ^ "The Tibetan Empire in Central Asia (Christopher Beckwith)". Retrieved 19 February 2009.
  8. ^ Hopkirk 1983, p. 1
  9. ^ Peregrine, Peter Neal & Melvin Ember, etc. (2001). Encyclopedia of Prehistory: East Asia and Oceania, Volume 3. Springer. p. 32. ISBN 978-0-306-46257-3.
  10. ^ Morris, Neil (2007). North and East Asia. Heinemann-Raintree Library. p. 11. ISBN 978-1-4034-9898-4.
  11. ^ Webb, Andrew Alexander Gordon (2007). Contractional and Extensional Tectonics During the India-Asia Collision. ProQuest LLC. p. 137. ISBN 978-0-549-50627-0.
  12. ^ Marston, Sallie A. and Paul L. Knox, Diana M. Liverman (2002). World regions in global context: peoples, places, and environments. Prentice Hall. p. 430. ISBN 978-0-13-022484-2.{{cite book}}: CS1 maint: uses authors parameter (link)
  13. ^ "Natural World: Deserts". National Geographic. Archived from the original on 12 January 2006.
  14. ^ Leslie Hook (30 August 2013). "Tibet: life on the climate front line". Financial Times. Retrieved 1 September 2013.
  15. ^ Liu, Xiaodong; Chen (2000). "Climatic warming in the Tibetan Plateau during recent decades". International Journal of Climatology. 20 (14): 1729–1742. Bibcode:2000IJCli..20.1729L. CiteSeerX doi:10.1002/1097-0088(20001130)20:14<1729::aid-joc556>3.0.co;2-y – via Academia.edu.
  16. ^ Ni, Jian (2000). "A Simulation of Biomes on the Tibetan Plateau and Their Responses to Global Climate Change". Mountain Research and Development. 20 (1): 80–89. doi:10.1659/0276-4741(2000)020[0080:ASOBOT]2.0.CO;2.
  17. ^ Cheng, Guodong; Wu (8 June 2007). "Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau". Journal of Geophysical Research. 112 (F2): F02S03. Bibcode:2007JGRF..112.2S03C. doi:10.1029/2006JF000631. S2CID 14450823.
  18. ^ Yang, Qinye; Zheng, Du (2004). A Unique Geographical Unit. p. 6. ISBN 978-7-5085-0665-4.
  19. ^ Sanyal, Sanjeev. Land of the seven rivers : a brief history of India's geography. ISBN 978-0-14-342093-4. OCLC 855957425.
  20. ^ Lia, Jijun; Ma, Zhenhua; Li, Xiaomiao; Peng, Tingjiang; Guo, Benhong; Zhang, Jun; Song, Chunhui; Liu, Jia; Hui, Zhengchuang; Yu, Hao; Ye, Xiyan; Liu, Shanpin; Wang Xiuxi (2017). "Late Miocene-Pliocene geomorphological evolution of the Xiaoshuizi peneplain in the Maxian Mountains and its tectonic significance for the northeastern Tibetan Plateau". Geomorphology. 295: 393–405. Bibcode:2017Geomo.295..393L. doi:10.1016/j.geomorph.2017.07.024.{{cite journal}}: CS1 maint: uses authors parameter (link)
  21. ^ Shi, F.; He, H.; Densmore, A.L.; Li, A.; Yang, X.; Xu, X. (2016). "Active tectonics of the Ganzi–Yushu fault in the southeastern Tibetan Plateau". Tectonophysics. 676: 112–124. doi:10.1016/j.tecto.2016.03.036.
  22. ^ Werhahn, Geraldine; Senn, Helen; Ghazali, Muhammad; Karmacharya, Dibesh; Sherchan, Adarsh Man; Joshi, Jyoti; Kusi, Naresh; López-Bao, José Vincente; Rosen, Tanya; Kachel, Shannon; Sillero-Zubiri, Claudio; MacDonald, David W. (2018). "The unique genetic adaptation of the Himalayan wolf to high-altitudes and consequences for conservation". Global Ecology and Conservation. 16: e00455. doi:10.1016/j.gecco.2018.e00455.
  23. ^ "Wild China: The Tibetan Plateau". The Nature of Things. Canadian Broadcasting Corporation. Retrieved 21 March 2013.
  24. ^ David Miller. "Nomads of Tibet and Bhutan". asinart.com. Retrieved 10 February 2008.
  25. ^ In pictures: Tibetan nomads BBC News
  26. ^ Zhang, X. L.; Ha, B. B.; Wang, S. J.; Chen, Z. J.; Ge, J. Y.; Long, H.; He, W.; Da, W.; Nian, X. M.; Yi, M. J.; Zhou, X. Y. (30 November 2018). "The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago". Science. 362 (6418): 1049–1051. doi:10.1126/science.aat8824. ISSN 0036-8075. PMID 30498126.
  27. ^ Ryavec, Karl (2015). A Historical Atlas of Tibet. University of Chicago Press. ISBN 9780226732442.
  28. ^ a b Oracle Thinkquest Education Foundation. monsoons: causes of monsoons. Archived 16 April 2009 at the Wayback Machine Retrieved on 22 May 2008.
  29. ^ "The Asian Monsoon". BBC Weather. Archived from the original on 1 November 2004.
  30. ^ Kuhle, Matthias (1998). "Reconstruction of the 2.4 Million km2 Late Pleistocene Ice Sheet on the Tibetan Plateau and its Impact on the Global Climate". Quaternary International. 45/46: 71–108. Bibcode:1998QuInt..45...71K. doi:10.1016/S1040-6182(97)00008-6.
  31. ^ Kuhle, M (2004). "The High Glacial (Last Ice Age and LGM) ice cover in High and Central Asia". In Ehlers, J.; Gibbard, P.L. (eds.). Development in Quaternary Science 2c (Quaternary Glaciation – Extent and Chronology, Part III: South America, Asia, Africa, Australia, Antarctica). pp. 175–99.
  32. ^ Kuhle, M. (1999). "Tibet and High Asia V. Results of Investigations into High Mountain Geomorphology, Paleo-Glaciology and Climatology of the Pleistocene". GeoJournal. 47 (1–2): 3–276. doi:10.1023/A:1007039510460. See chapter entitled: "Reconstruction of an approximately complete Quaternary Tibetan Inland Glaciation between the Mt. Everest and Cho Oyu Massifs and the Aksai Chin. – A new glaciogeomorphological southeast-northwest diagonal profile through Tibet and its consequences for the glacial isostasy and Ice Age cycle".
  33. ^ Kuhle, M. (1988). "The Pleistocene Glaciation of Tibet and the Onset of Ice Ages – An Autocycle Hypothesis". GeoJournal. 17 (4): 581–96. doi:10.1007/BF00209444. Tibet and High-Asia I. Results of the Sino-German Joint Expeditions (I).
  34. ^ a b Kuhle, Matthias (2001). "The Tibetan Ice Sheet; its Impact on the Palaeomonsoon and Relation to the Earth's Orbital Variations". Polarforschung. 71 (1/2): 1–13.
  35. ^ "Global warming benefits to Tibet: Chinese official". Agence France-Presse. 18 August 2009.


  • Hopkirk, Peter (1983). Trespassers on the Roof of the World: The Secret Exploration of Tibet. J. P. Tarcher. ISBN 978-0-87477-257-9.
  • Brantingham, P. J. & Xing, G. (2006). "Peopling of the northern Tibetan Plateau". World Archaeology. 38 (3): 387–414. doi:10.1080/00438240600813301. S2CID 13534630.

External links

Media files used on this page

Jewel-Toned Lakes of the Qinghai-Tibet Plateau.jpg
Natural-colour image of the Tibetan Plateau. The Qinghai-Tibet Plateau not only gives rise to most of Asia’s major rivers, it also holds a constellation of salt- and freshwater lakes. Due to differences in depth, sediments, and microscopic organisms in the various lakes, they collectively present a myriad of greens, blues, and teals when viewed from above. Resembling bits of abalone shell, the lakes glimmer in assorted jewel tones. The lakes in this region typically lack outlets, allowing the accumulation of minerals that, combined with other features, influence lake colour. The lakes vary widely in surface area and shape. Two of the largest in this scene are Siling Co and Nam Co. One of the most irregularly shaped lakes is Ngangla Ringco. Nam Co ranks among the world’s highest-altitude salt lakes, with a lake surface at 4,718 meters. It measures roughly 79 by 25 kilometres and, except for areas along the south-western and north-eastern margins, the lake appears nearly uniform blue. Siling Co’s shape and colour vary more than Nam Co’s. The lake’s blue-green hue ranges from light (in the north and east) to dark (in the south and west). Fringing the lake are smaller water bodies, which all used to be part of a larger lake. Lying to the west, Ngangla Ringco is one of the most unusually shaped water bodies on the Qinghai-Tibet Plateau, with colours ranging from turquoise to sapphire. Small islands dot the surface in the west, and a large island sits in the lake’s eastern half.
Lake Yamdroktso.jpg
Author/Creator: B_cool from SIN, Singapore, Licence: CC BY 2.0
Lake Yamdroktso, Tibet Autonomous Region, China
Tibet and surrounding areas topographic map.png
(c) The author of the work
and GLOBE and ETOPO1
(see above and the Source section), CC BY-SA 4.0
Tibet and surrounding areas above 1600 m. topographic map.
The map was created using the Generic Mapping Tools, GMT, version 5.1.2.
Nomads near Namtso.jpg
Author/Creator: unknown, Licence: CC-BY-SA-3.0
Aba County Aba Prefecture Sichuan China.jpg
Author/Creator: Jialiang Gao www.peace-on-earth.org, Licence: CC-BY-SA-3.0
Buddhist stupa and houses outside the town of Aba, on the Tibetan Plateau.
Nomad camp near Tingri Tibet. 1993i.jpg
Author/Creator: John Hill, Licence: CC BY-SA 4.0
Nomad camp near Tingri Tibet. 1993
Himalaya from the International Space Station. In addition to looking heavenward, NASA helps the world see the Earth in ways no one else can. Astronauts on board the International Space Station recently took advantage of their unique vantage point to photograph the Himalayas, looking south from over the Tibetan Plateau. The perspective is illustrated by the summits of Makalu [left (8,462 metres; 27,765 feet)], Everest [middle (8,848 metres; 29,035 feet)] , Lhotse [middle (8,516 metres; 27,939 feet)] and Cho Oyu [right (8,201 metres; 26,906 feet)] -- at the heights typically flown by commercial aircraft.

On May 24, 2002, MODIS captured this image of the sparsely vegetated, lake-dotted Tibetan Plateau (top). To the south, the snow-covered peaks of the Himalaya Ranges ring the Plateau.

  • To the far south (lower right), India's Brahmaputra River glints in the sun.
Tibet, a walk into no where.JPG
Author/Creator: StateStreet, Licence: CC BY-SA 3.0
Went for a walk one morning after waking up in Tibet. What I would give to just be back there.