Mattress with lyocell as cover material
Label of a coat containing Tencel (a brand of lyocell)

Lyocell is a form of rayon. It consists of cellulose fibre, made from dissolving pulp and then reconstituting it by dry jet-wet spinning. The fibre is used to make textiles for clothing and other purposes.[1] Unlike rayon made by the viscose process, lyocell production does not use harmful carbon disulfide,[2][3] which is toxic to workers and the environment.[4][5][2] In 2018, the lyocell process was more expensive than the more common viscose process for making rayon.[2]

"Lyocell" has become a genericized trademark, used to refer to the lyocell process for making cellulose fibers.[3][6] The U.S. Federal Trade Commission defines lyocell as a fibre "composed of cellulose precipitated from an organic solution in which no substitution of the hydroxyl groups takes place and no chemical intermediates are formed". It classifies the fibre as a sub-category of rayon.[7]


Lyocell fibers are produced under brand names that include Tencel (by Acordis, previously Courtaulds), Lenzing Lyocell (Lenzing), Newcell (Akzo Nobel), and Seacell (Zimmer AG).[8] The company Birla also sells it under the brand name Excel.[9]


The development of tencel was motivated by environmental concerns; researchers sought to manufacture rayon by means less harmful than the viscose method.[10]

The lyocell process was developed in 1972 by a team at the now defunct American Enka fibers facility at Enka, North Carolina. In 2003, the American Association of Textile Chemists and Colorists (AATCC) by awarded Neal E. Franks their Henry E. Millson Award for Invention for lyocell.[11] In 1966–1968, D. L. Johnson of Eastman Kodak Inc. studied NMMO solutions. In the decade 1969 to 1979, American Enka tried unsuccessfully to commercialize the process.[10] The operating name for the fibre inside the Enka organization was "Newcell", and the development was carried through pilot plant scale before the work was stopped.

The basic process of dissolving cellulose in NMMO was first described in a 1981 patent by Mcorsley for Akzona Incoporated[10][12] (the holding company of Akzo). In the 1980s the patent was licensed by Akzo to Courtaulds and Lenzing.[6]

The fibre was developed by Courtaulds Fibres under the brand name "Tencel" in the 1980s. In 1982, a 100kg/week pilot plant was built in Coventry, UK, and production was increased tenfold (to a ton/week) in 1984. In 1988, a 25 ton/week semi-commercial production line opened at the Grimsby, UK, pilot plant.[13][10]

The process was first commercialised at Courtaulds' rayon factories at Mobile, Alabama[14] (1990), and at the Grimsby plant (1998). In January 1993, the Mobile Tencel plant reached full production levels of 20,000 tons per year, by which time Courtaulds had spent £100 million and 10 years on Tencel development. Tencel revenues for 1993 were estimated as likely to be £50 million. A second plant in Mobile was planned.[14] By 2004, production had quadrupled to 80,000 tons.[6]

Lenzing began a pilot plant in 1990,[10] and commercial production in 1997, with 12 metric tonnes/year made in a plant in Heiligenkreuz im Lafnitztal, Austria.[10][6] When an explosion hit the plant in 2003 it was producing 20,000 tonnes/year, and planning to double capacity by the end of the year.[15] In 2004 Lenzing was producing 40,000 tons [sic, probably metric tonnes].[6] In 1998, Lenzing and Courtaulds reached a patent dispute settlement.[6]

In 1998 Courtaulds was acquired by competitor Akzo Nobel,[16] who combined the Tencel division with other fibre divisions under the Accordis banner, then sold them to private equity firm CVC Partners. In 2000, CVC sold the Tencel division to Lenzing AG, who combined it with their "Lenzing Lyocell" business, but maintained the brand name Tencel.[6] They took over the plants in Mobile and Grimsby, and by 2015 were the largest lyocell producer at 130,000 tonnes/year.[10]


Shirt made from lyocell

It is used in many everyday fabrics. Staple fibres are used in clothes such as denim, chino, underwear, casual wear, and towels. Filament fibres, which are generally longer and smoother than staple fibres,[17] are used in items that have a silkier appearance such as women's clothing and men's dress shirts. Lyocell may be blended with a variety of other fibres such as silk, cotton, rayon, polyester, linen, nylon, and wool. Lyocell also is used in conveyor belts, specialty papers, and medical dressings.[18]


Fibrillation of lyocell may produce a "peach-fuzz" feel.

Lyocell shares many properties with other fibres such as cotton, linen, silk, ramie, hemp and viscose rayon, (to which it is very closely related chemically). Lyocell is 50% more absorbent than cotton, [19] and has a longer wicking distance compared to modal fabrics of similar weave. [20]

Compared to cotton, consumers often say Lyocell fibres feel softer, and "airier", due to its better ability to wick moisture. Industry claims of higher resistance to wrinkling are as yet unsupported. Lyocell fabric may be machine washed or drycleaned. It drapes well, and may be dyed many colors, needing slightly less dye than cotton to achieve the same depth of colour. [21][9]

Manufacturing process

The lyocell process uses a direct solvent rather than indirect dissolution such as the xanthation-regeneration route in the viscose process. Lyocell fiber is produced from dissolving pulp, which contains cellulose in high purity with little hemicellulose and no lignin. Hardwood logs (such as oak and birch[22]) are chipped into squares about the size of postage stamps. The chips are digested chemically, either with the prehydrolysis-kraft process or with sulfite process, to remove the lignin and hemicellulose. The pulp is bleached to remove the remaining traces of lignin, dried into a continuous sheet and rolled onto spools. The pulp has the consistency of thick posterboard paper and is delivered in rolls weighing some 500 lb (230 kg).

N-Methylmorpholine N-oxide is a key solvent in the lyocell Process

At the lyocell mill, rolls of pulp are broken into one-inch squares and dissolved in N-methylmorpholine N-oxide (NMMO[2]), giving a solution called "dope". The filtered cellulose solution is then pumped through spinnerets, devices used with a variety of synthetic fibres. The spinneret is pierced with small holes rather like a showerhead; when the solution is forced through it, continuous strands of filament come out. The fibres are drawn in air to align the cellulose molecules, giving the lyocell fibres its characteristic high strength. The fibres are then immersed into a water bath, where desolvation of the cellulose sets the fibre strands. The bath contains some dilute amine oxide in a steady state concentration. Then the fibres are washed with de-mineralised water. Next, the lyocell fibre passes to a drying area, where the water is evaporated from it.

Manufacture then follows the same route as with other kinds of fibers such as viscose. The strands pass to a finishing area, where a lubricant, which may be a soap or silicone or other agent, depending on the future use of the fibre, is applied. This step is basically a detangler, prior to carding and spinning into yarn. At this stage, the dried, finished fibres are in a form called tow, a large untwisted bundle of continuous lengths of filament. The bundles of tow are taken to a crimper, a machine that compresses the fibre, giving it texture and bulk. The crimped fibre is carded by mechanical carders, which perform an action like combing, to separate and order the strands. The carded strands are cut and baled for shipment to a fabric mill. The entire manufacturing process, from unrolling the raw cellulose to baling the fibre, takes about two hours. After this, the lyocell may be processed in many ways. It may be spun with another fibre, such as cotton or wool. The resulting yarn can be woven or knitted like any other fabric, and may be given a variety of finishes, from soft and suede-like to silky.[18]

The amine oxide used to dissolve the cellulose and set the fibre after spinning (NMMO) is recycled. Typically, 99 percent of the amine oxide is recovered.[9] NMMO biodegrades without producing harmful products.[2] Since there is little waste product, this process is relatively eco-friendly, though it is energy-intensive.[9]

See also

  • Modal (textile)


  1. ^ Krässig, Hans; Schurz, Josef; Steadman, Robert G.; Schliefer, Karl; Albrecht, Wilhelm; Mohring, Marc; Schlosser, Harald (2002). "Cellulose". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a05_375.pub2.
  2. ^ a b c d e "Regenerated cellulose by the Lyocell process, a brief review of the process and properties :: BioResources". BioRes. 2018.
  3. ^ a b Tierney, John William (2005). Kinetics of Cellulose Dissolution in N-MethylMorpholine-N-Oxide and Evaporative Processes of Similar Solutions (Thesis).
  4. ^ Swan, Norman; Blanc, Paul (20 February 2017). "The health burden of viscose rayon". ABC Radio National.
  5. ^ Michelle Nijhuis. "Bamboo Boom: Is This Material for You?". Scientific American. doi:10.1038/scientificamericanearth0609-60.
  6. ^ a b c d e f g "Lenzing Acquires TENCEL®, 2004". Archived from the original on 2010-03-23. Retrieved 2010-01-13.
  7. ^ 16 CFR 303.7(d)
  8. ^ B. Ozipek, H. Karakas, in Advances in Filament Yarn Spinning of Textiles and Polymers, 2014. As quoted by Elsevier
  9. ^ a b c d "Material Guide: How Ethical is Tencel?". Good On You. 2018-07-27. Retrieved 2020-07-21.
  10. ^ a b c d e f g Johnathan Y. Chen. Textiles and fashion: materials, design and technology, 2015. As quoted by Elsevier
  11. ^ "Millson Award for Invention". AATCC.
  12. ^ us 4246332, Mcorsley, C., "Process for Shaped Cellulose Article Prepared from Solution Containing Cellulose Dissolved in a Tertiary Amine N-oxide Solvent", published 1981  New York, New York, Akzona Incorporated.
  13. ^ Introducing Tencel lyocell
  14. ^ a b Ipsen, Erik (25 February 1993). "INTERNATIONAL MANAGER: Freed of Textile Business, Courtaulds Is Doing Fine". International Herald Tribune.
  15. ^ Beacham, Will. "Explosion and fire halts 'Lyocell' output at Lenzing's Heiligenkreuz, Austria plant". ICIS Explore.
  16. ^ "Bulletin EU 6-1998 (en): 1.3.50 | Akzo Nobel/Courtaulds". Europa. Archived from the original on 22 September 2008. Retrieved 13 November 2015.
  17. ^ Yates, Marypaul (2002). Fabrics: a guide for interior designers and architects (1st ed.). New York: Norton. ISBN 978-0-393-73062-3.
  18. ^ a b Kadolph, Sara; Langford, Anna (2002). Textiles (Ninth ed.). Prentice Hall.
  19. ^ [1]
  20. ^ Ozdemir, Hakan (2017-03-01). "Permeability and Wicking Properties of Modal and Lyocell Woven Fabrics Used for Clothing". Journal of Engineered Fibers and Fabrics. 12 (1). doi:10.1177/155892501701200102. ISSN 1558-9250.
  21. ^ FiberSource
  22. ^ Lyocell - raw materials

External links

Media files used on this page

The label of a coat with lyocell. Scanned by me.
Lyocell Vital fabric.jpg
Author/Creator: Dobrozhinetsky, Licence: CC BY-SA 3.0
Ткань с волкнами Lyocell в чехле матраса.
Patagonia, OutDoor 2018, Friedrichshafen (1X7A0346).jpg
Author/Creator: Matti Blume, Licence: CC BY-SA 4.0
Patagonia lyocell shirt, OutDoor 2018
chemical structure of N-methylmorpholine-N-oxide (NMO)
Fibrillation of lyocell fibre.png
Author/Creator: W. Zhang, Licence: CC BY 3.0
Fibrillation of lyocell fibre