International Geophysical Year

Official emblem of the IGY

The International Geophysical Year (IGY; French: Année géophysique internationale) was an international scientific project that lasted from 1 July 1957 to 31 December 1958. It marked the end of a long period during the Cold War when scientific interchange between East and West had been seriously interrupted. Sixty-seven countries participated in IGY projects, although one notable exception was the mainland People's Republic of China, which was protesting against the participation of the Republic of China (Taiwan). East and West agreed to nominate the Belgian Marcel Nicolet as secretary general of the associated international organization.[1][2]

The IGY encompassed eleven Earth sciences: aurora and airglow, cosmic rays, geomagnetism, gravity, ionospheric physics, longitude and latitude determinations (precision mapping), meteorology, oceanography, seismology, and solar activity.[2] The timing of the IGY was particularly suited for studying some of these phenomena, since it covered the peak of solar cycle 19.

Both the Soviet Union and the U.S. launched artificial satellites for this event; the Soviet Union's Sputnik 1, launched on October 4, 1957, was the first successful artificial satellite.[3] Other significant achievements of the IGY included the discovery of the Van Allen radiation belts by Explorer 1 and the defining of mid-ocean submarine ridges, an important confirmation of plate-tectonic theory.[4][5][6]


A commemorative stamp issued by Japan in 1957 to mark the IGY. The illustration depicts the Japanese Research Ship Sōya and a penguin.

The origin of the International Geophysical Year can be traced to the International Polar Years held in 1882–1883, then in 1932–1933 and most recently from March 2007 to March 2009. On 5 April 1950, several top scientists (including Lloyd Berkner, Sydney Chapman, S. Fred Singer, and Harry Vestine), met in James Van Allen's living room and suggested that the time was ripe to have a worldwide Geophysical Year instead of a Polar Year, especially considering recent advances in rocketry, radar, and computing.[7] Berkner and Chapman proposed to the International Council of Scientific Unions that an International Geophysical Year (IGY) be planned for 1957–58, coinciding with an approaching period of maximum solar activity.[8][9] In 1952, the IGY was announced.[10] Joseph Stalin's death in 1953 opened the way for international collaboration with the Soviet Union.

On 29 July 1955, James C. Hagerty, president Dwight D. Eisenhower's press secretary, announced that the United States intended to launch "small Earth circling satellites" between 1 July 1957 and 31 December 1958 as part of the United States contribution to the International Geophysical Year (IGY).[11] Project Vanguard would be managed by the Naval Research Laboratory and to be based on developing sounding rockets, which had the advantage that they were primarily used for non-military scientific experiments.[12]

Four days later, at the Sixth Congress of International Astronautical Federation in Copenhagen, scientist Leonid I. Sedov spoke to international reporters at the Soviet embassy and announced his country's intention to launch a satellite in the "near future".[13]

To the surprise of many, the USSR launched Sputnik 1 as the first artificial Earth satellite on 4 October 1957. After several failed Vanguard launches, Wernher von Braun and his team convinced President Dwight D. Eisenhower to use one of their US Army missiles for the Explorer program (there was not yet an inhibition about using military rockets to get into space). On 8 November 1957, the US Secretary of Defense instructed the US Army to use a modified Jupiter-C rocket to launch a satellite.[14] The US achieved this goal only four months later with Explorer 1, on 1 February 1958, but after Sputnik 2 on 3 November 1957, making Explorer 1 the third artificial Earth satellite. Vanguard 1 became the fourth, launched on 17 March 1958. The Soviet launches would be followed by considerable political consequences, one of which was the creation of the US space agency NASA on 29 July 1958.

The British–American survey of the Atlantic, carried out between September 1954 and July 1959, discovered the full length of the mid-Atlantic ridges (plate tectonics); it was a major discovery during the IGY.[15]

World Data Centers

Although the 1932 Polar Year accomplished many of its goals, it fell short on others because of the advance of World War II. In fact, because of the war, much of the data collected and scientific analyses completed during the 1932 Polar Year were lost forever, something that was particularly troubling to the IGY organizing committee.[16] The committee resolved that "all observational data shall be available to scientists and scientific institutions in all countries." They felt that without the free exchange of data across international borders, there would be no point in having an IGY.[17]

In April 1957, just three months before the IGY began, scientists representing the various disciplines of the IGY established the World Data Center system. The United States hosted World Data Center "A" and the Soviet Union hosted World Data Center "B". World Data Center "C" was subdivided among countries in Western Europe, Australia, and Japan.[18] Today, NOAA hosts seven of the fifteen World Data Centers in the United States.

Each World Data Center would eventually archive a complete set of IGY data to deter losses prevalent during the International Polar Year of 1932. Each World Data Center was equipped to handle many different data formats, including computer punch cards and tape—the original computer media. In addition, each host country agreed to abide by the organizing committee's resolution that there should be a free and open exchange of data among nations.[19][20][21] ICSU-WDS goals are to preserve quality-assured scientific data and information, to facilitate open access, and promote the adoption of standards.[22] ICSU World Data System created in 2008 superseded the World Data Centers (WDCs) and Federation of Astronomical and Geophysical data analysis Services (FAGS) created by ICSU to manage data generated by the International Geophysical Year.[23][24][25]


The IGY triggered an 18-month year of Antarctic science. The International Council of Scientific Unions, a parent body, broadened the proposals from polar studies to geophysical research. More than 70 existing national scientific organizations then formed IGY committees, and participated in the cooperative effort.

Australia established its first permanent base on the Antarctic continent at Mawson in 1954. It is now the longest continuously operating station south of the Antarctic Circle.[26] Davis was added in 1957, in the Vestfold Hills, 400 miles (640 km) east of Mawson. The wintering parties for the IGY numbered 29 at Mawson and 4 at Davis, all male. (Both stations now have 16 to 18 winterers, including both sexes.) As a part of the IGY activities, a two-man camp was installed beside Taylor Glacier, 60 miles (97 km) west of Mawson. Its principal purpose was to enable parallactic photography of the aurora australis (thus locating it in space), but it also permitted studies of Emperor penguins in the adjacent rookery.

Two years later, Australia took over the running of Wilkes, a station built for the IGY by the United States. When Wilkes rapidly deteriorated from snow and ice accumulation, plans were made to build Casey Station, known as Repstat ("replacement station"). Opened in 1969, Repstat was replaced by present-day Casey station in 1988.

Halley Research Station was founded in 1956 for the IGY by an expedition from the (British) Royal Society. The bay where the expedition set up their base was named Halley Bay, after the astronomer Edmond Halley.

Showa Station, the first Japanese base in Antarctica, was set up in January 1957,[27] supported by the ice breaker Sōya When the ship returned a year later, it became beset offshore (stuck in the sea-ice). It was eventually freed with the assistance of the US icebreaker Burton Island but could not resupply the station. The 1957 winterers were retrieved by helicopter, but bad weather prevented going back for the station's 15 sled dogs, which were left chained up. When the ship returned a year later, two of the dogs, Taro and Jiro, were still alive.[28] They had escaped the dogline and survived by killing Adélie penguins in a nearby rookery (which were preserved by the low temperature). The two dogs became instant national heroes in Japan. A movie about this story was made in 2006, Eight Below.

France contributed Dumont d'Urville Station and Charcot Station in Adélie Land. As a forerunner expedition, the ship Commandant Charcot of the French Navy spent nine months of 1949/50 at the coast of Adelie Land. The first French station, Port Martin, was completed 9 April 1950, but destroyed by fire the night of 22 to 23 January 1952.[29]

Belgium established the King Baudouin Base in 1958. The expedition was led by Gaston de Gerlache, son of Adrien de Gerlache who had led the 1897–1899 Belgian Antarctic Expedition.[30] In December 1958, four team members were stranded several hundred kilometers inland when one of the skis on their light aircraft broke on landing. After a ten-day ordeal, they were rescued by an IL-14 aircraft after a flight of 1,940 miles (3,100 km) from the Soviet base, Mirny Station.

The Amundsen–Scott South Pole Station was erected as the first permanent structure at the South Pole in January 1957. It survived intact for 53 years, but was slowly buried in the ice (as all structures there eventually sink into the icy crust), until it was demolished in December 2010 for safety reasons.[31]


Ice Skate 2 was a floating research station constructed and staffed by U.S. scientists. It mapped the bottom of the Arctic Ocean. Zeke Langdon was a meteorologist on the project. Ice Skate 2 was planned to be staffed in 6 month shifts, but due to soft ice surfaces for landing some crew members were stationed for much longer. At one point they lost all communications with anyone over their radios for one month except the expedition on the North Pole. At another point the ice sheet broke up and their fuel tanks started floating away from the base. They had to put pans under the plane engines as soon as they landed as any oil spots would go straight through the ice in the intense sunshine. Their only casualty was a man who got too close to the propeller with the oil pan.[32]

Norbert Untersteiner was the project leader for Drifting Station Alpha and in 2008 produced and narrated a documentary about the project for the National Snow and Ice Data Center.[33]

Participating countries

The participating countries for the IGY included the following:[34]


In the end, the IGY was a resounding success, and it led to advancements that live on today. For example, the work of the IGY led directly to the Antarctic Treaty, which called for the use of Antarctica for peaceful purposes and cooperative scientific research. Since then, international cooperation has led to protecting the Antarctic environment, preserving historic sites, and conserving the animals and plants. Today, 41 nations have signed the Treaty and international collaborative research continues.

The ICSU World Data System (WDS) was created by the 29th General Assembly of the International Council for Science (ICSU) and builds on the 50-year legacy of the former ICSU World Data Centres (WDCs) and former Federation of Astronomical and Geophysical data-analysis Services (FAGS).[35]

This World Data System, hosts the repositories for data collected during the IGY. Seven of the 15 World Data Centers in the United States are co-located at NOAA National Data Centers or at NOAA affiliates. These ICSU Data Centers not only preserve historical data, but also promote research and ongoing data collection.[36]

The fourth International Polar Year on 2007–2008 focused on climate change and its effects on the polar environment. Sixty countries participated in this effort and it will include studies in the Arctic and Antarctic.[37]

IGY representations in popular culture

  • "I.G.Y. (What a Beautiful World)" is a track on Donald Fagen's 1982 album, The Nightfly. The song is sung from an optimistic viewpoint during the IGY, and features references to then-futuristic concepts, such as solar power (first used in 1958), Spandex (invented in 1959), space travel for entertainment, and an undersea international high-speed rail.[38] The song peaked at #26 on the Billboard Hot 100 on 27 November – 11 December 1982 and was nominated for a Grammy Award for song of the year.[39]
  • The IGY is featured prominently in a 1957–1958 run of Pogo comic strips by Walt Kelly. The characters in the strip refer to the scientific initiative as the "G.O. Fizzickle Year". During this run, the characters try to make their own contributions to scientific endeavours, such as putting a flea on the moon. Compilations of the strips were published by Simon & Schuster SC in 1958 as G.O. Fizzickle Pogo and later Pogo's Will Be That Was in 1979. The run was also included in Pogo: The Complete Daily & Sunday Comic Strips Vol. 5: Out of This World at Home published by Fantagraphics in 2018.
  • Jazz saxophonist and composer Gil Mellé recorded a "Dedicatory Piece to the Geo-Physical Year of 1957" for his album Primitive Modern, released by Prestige Records.
  • The IGY was featured in a cartoon by Russell Brockbank in Punch in November 1956. It shows the three main superpowers UK, USA and USSR at the South Pole, each with a gathering of penguins which they are trying to educate with "culture". The penguins in the British camp are being bored with Francis Bacon; in the American camp they are happily playing baseball, while the Russian camp resembles a gulag, with barbed-wire fences and the penguins are made to march and perform military maneuvers.
  • The Alistair MacLean novel Night Without End takes place in and around an IGY research station in Greenland.
  • The IGY features in two episodes of the 1960–61 season of the documentary television series Expedition!: "The Frozen Continent" and "Man's First Winter At The South Pole".

See also

References and sources

  1. ^ Administration, US Department of Commerce, National Oceanic and Atmospheric. "Rockets, Radar, and Computers: The International Geophysical Year".
  2. ^ a b Everts, Sarah (2016). "Information Overload". Distillations. 2 (2): 26–33. Retrieved 20 March 2018.
  3. ^ "International GeoPhysical Year".
  4. ^ "IGY History". ESRL Global Monitoring Division. Archived from the original on 17 May 2008. Retrieved 14 August 2015.
  5. ^ WMO, Archives. "The International Geophysical Year, 1957–1958". Archived from the original on 2016-07-02. Retrieved 2016-06-29.
  6. ^ "Korolev, Sputnik, and The International Geophysical Year".
  7. ^ Korsmo, Fae L. (1 July 2007). "The Genesis of the International Geophysical Year". Physics Today. 60 (7): 38. Bibcode:2007PhT....60g..38K. doi:10.1063/1.2761801.
  8. ^ "The International Geophysical Year". National Academy of Sciences. 2005. Archived from the original on 21 May 2016. Retrieved 14 August 2015.
  9. ^ Matthew Kohut (Fall 2008). "Shaping the Space Age: The International Geophysical Year". ASK Magazine. NASA (32). Archived from the original on 19 February 2013. Retrieved 5 July 2012.
  10. ^ "This Month in Physics History". APS News. 16 (9). October 2007. Retrieved 1 September 2018.
  11. ^ Hagerty, James C. (29 July 1955). "The White House: Statement by James C. Hagerty" (PDF) (Press release). Archived from the original (PDF) on 5 March 2019. Retrieved 1 September 2018.
  12. ^ "Vanguard Project". U.S. Naval Research Laboratory. Archived from the original on 2020-02-16. Retrieved 2015-08-13.
  13. ^ Schefter, James (1999). The Race: The uncensored story of how America beat Russia to the Moon. New York: Doubleday. ISBN 0-385-49253-7. isbn:0385492537.
  14. ^ Winter, Frank H; van der Linden, Robert (November 2007), "Out of the Past", Aerospace America, p. 38
  15. ^ "Rockets, Radar, and Computers: The International Geophysical Year". US Department of Commerce, National Oceanic and Atmospheric Administration. May 12, 2017.
  16. ^ Beardsley, Ann, 1951- (2016-09-09). Historical guide to NASA and the space program. Garcia, C. Tony,, Sweeney, Joseph. Lanham. ISBN 978-1-4422-6287-4. OCLC 949912296.{{cite book}}: CS1 maint: multiple names: authors list (link)
  17. ^ Odishaw, Hugh (1959). "International Geophysical Year". Science. 129 (3340): 14–25. Bibcode:1959Sci...129...14O. doi:10.1126/science.129.3340.14. ISSN 0036-8075. JSTOR 1755204. PMID 17794348.
  18. ^ Odishaw, Hugh (1959). "International Geophysical Year". Science. 129 (3340): 14–25. Bibcode:1959Sci...129...14O. doi:10.1126/science.129.3340.14. ISSN 0036-8075. JSTOR 1755204. PMID 17794348.
  19. ^ "World Data System (WDS)". Archived from the original on 2013-06-05. Retrieved 12 June 2013.
  20. ^ Ad hoc Strategic Committee on Information and Data. Final Report to the ICSU Committee on Scientific Planning and Review (PDF). ICSU. 2008. p. 25. Archived from the original (PDF) on 2013-05-25. Retrieved 2016-06-29.
  21. ^ Ad -hoc Strategic Coordinating Committee on Information and Data Interim Report to the ICSU Committee on Scientific Planning and Review (PDF). ICSU. 2011. p. 7. ISBN 978-0-930357-85-6. Archived from the original (PDF) on 2015-09-10. Retrieved 2016-06-29.
  22. ^ "Constitution of the International Council for Science World Data System (ICSU WDS)" (PDF). Retrieved 12 June 2013.
  23. ^ "International science community to build a 'World Data System'". itnews. 28 Oct 2008. Retrieved 12 June 2013.
  24. ^ Cheryl Pellerin. "International Science Council to Revamp World Data Centers". Archived from the original on 21 October 2012. Retrieved 12 June 2013.
  25. ^ US National Academies. "The International Geophysical Year". Archived from the original on 7 June 2013. Retrieved 21 June 2013.
  26. ^ "History of Australian Antarctic stations". Retrieved 2019-03-03.
  27. ^ Agency, Japan Aerospace Exploration. "ISAS – International Geophysical Year/ History of Japanese Space Research".
  28. ^ Solar, Igor I. (2012-11-21). "Taro and Jiro — A story of canine strength and tenacity". Digital Journal. Retrieved 2021-03-25.
  29. ^ "French IGY – Following the Data of the International Geophysical Year (1957–8)". Archived from the original on 2015-12-18. Retrieved 2016-06-29.
  30. ^ "Belgium Federal Science Policy and Polar Secretariat – Home". Archived from the original on 2012-03-24. Retrieved 2016-06-29.
  31. ^ "South Pole's first building blown up after 53 years". 2011-03-31.
  32. ^ Harrington, Jon. "Shared Photographs". Google Photos. Retrieved March 25, 2016.
  33. ^ "International Geophysical Year, 1957-1958: Drifting Station Alpha Documentary Film, Version 1".
  34. ^ Nicolet, M. "The International Geophysical Year 1957/58" (PDF). World Meteorological Organization. Archived from the original (PDF) on 28 July 2013. Retrieved 28 November 2013.
  35. ^ "Introduction to ICSU World Data System". ICSU. Retrieved 17 July 2013.
  36. ^ "ICSU World Data System". ICSU. Retrieved 17 July 2013.
  37. ^ "International Polar Year 2007–2008". Retrieved 17 July 2013.
  38. ^ "Lyrics – The Nightfly (1982) – D. Fagen Solo". Archived from the original on 15 August 2015. Retrieved 14 August 2015.
  39. ^ "25th Grammy Awards list of nominees". 1983. Retrieved 16 April 2016.

External links

Media files used on this page

Flag of Australia (converted).svg

Flag of Australia, when congruence with this colour chart is required (i.e. when a "less bright" version is needed).

See Flag of Australia.svg for main file information.
Flag of Austria.svg
Flag of Austria with the red in the Austrian national colours which was official ordered within the Austrian Armed Forces (Bundesheer) in the characteristic “Pantone 032 C” (since May 2018 the Red is ordered in the characteristic “Pantone 186 C”.)
Flag of Belgium (civil).svg
The civil ensign and flag of Belgium. It is identical to Image:Flag of Belgium.svg except that it has a 2:3 ratio, instead of 13:15.
Flag of Brazil.svg
Author/Creator: unknown, Licence: PD
Flag of Ceylon.svg
Flag of Ceylon between 1951 and 1972.
Flag of Chile.svg
It is easy to put a border around this flag image
Flag of the Dominican Republic.svg
The flag of the Dominican Republic has a centered white cross that extends to the edges. This emblem is similar to the flag design and shows a bible, a cross of gold and 6 Dominican flags. There are branches of olive and palm around the shield and above on the ribbon is the motto "Dios,Patria!, Libertad" ("God, Country, Freedom") and to amiable freedom. The blue is said to stand for liberty, red for the fire and blood of the independence struggle and the white cross symbolized that God has not forgotten his people. "Republica Dominicana". The Dominican flag was designed by Juan Pablo Duarte, father of the national Independence of Dominican Republic. The first dominican flag was sewn by a young lady named Concepción Bona, who lived across the street of El Baluarte, monument where the patriots gathered to fight for the independence, the night of February 27th, 1844. Concepción Bona was helped by her first cousin María de Jesús Pina.
Flag of Ecuador.svg
Made by author of Xramp, first uploaded by Denelson83 as Flag of Ecuador.svg, modifications by Husunqu.
Flag of Egypt (1922–1958).svg
flag of the Kingdom of Egypt (1922–1953) and the Republic of Egypt (1953–1958).
Flag of Egypt (1922–1953).svg
flag of the Kingdom of Egypt (1922–1953) and the Republic of Egypt (1953–1958).
Flag of Germany.svg
Author/Creator: unknown, Licence: PD
Flag of Greece (1822-1978).svg
Old national flag of Greece on land (1822–1970 and 1974–1978)
Flag of Guatemala.svg
The flag of Guatemala, official since 1871.
Flag of Iceland.svg
The Flag of Iceland.
  • Horizontal aspect ratio: 7:1:2:1:14;
  • Vertical aspect ratio: 7:1:2:1:7.
Flag of India.svg
Author/Creator: unknown, Licence:
Flag of Indonesia.svg
bendera Indonesia
State flag of Iran (1964–1980).svg
New Version of ا:Image:Lionflag.svg with a cleaner emblem and the correct ratio.
Flag of Ireland.svg
Note that the green portion of the flag was designed to represent the majority Catholic residents of the island, the orange side the minority Protestant and the white middle part peace and harmony between them.
Flag of Israel.svg
Flag of Israel. Shows a Magen David (“Shield of David”) between two stripes. The Shield of David is a traditional Jewish symbol. The stripes symbolize a Jewish prayer shawl (tallit).
Flag of Italy.svg
Author/Creator: unknown, Licence: PD
Flag of Japan (1870-1999).svg
Variant version of a flag of Japan, used between January 27, 1870 and August 13, 1999 (aspect ratio 7:10).
Flag of Japan (1870–1999).svg
Variant version of a flag of Japan, used between January 27, 1870 and August 13, 1999 (aspect ratio 7:10).
Flag of Mexico.svg
Flag of Mexico Official version of the Flag of the United Mexican States or Mexico, adopted September 16th 1968 by Decree (Published August 17th 1968), Ratio 4:7. The previous version of the flag displayed a slightly different Coat of Arms. It was redesigned to be even more resplendent due to the upcoming Mexico City 1968 Olympic Games; According to Flag of Mexico, the colors are Green Pantone 3425 C and Red Pantone 186 C. According to [1] or [2], that translates to RGB 206, 17, 38 for the red, and RGB 0, 104, 71 for the green.
Flag of New Zealand.svg
Flag of New Zealand. Specification: , quoting New Zealand Gazette, 27 June 1902.
Flag of Norway.svg
Flag of Norway. The colors approximately correspond to Pantone 200 C (deep red) and 281 C (dark blue).
Flag of Portugal.svg
Flag of Portugal, created by Columbano Bordalo Pinheiro (1857-1929), officially adopted by Portuguese government in June 30th 1911 (in use since about November 1910). Color shades matching the RGB values officially reccomended here. (PMS values should be used for direct ink or textile; CMYK for 4-color offset printing on paper; this is an image for screen display, RGB should be used.)
Flag of Rhodesia and Nyasaland (1953–1963).svg
Flag of the Federation of Rhodesia and Nyasaland
Flag of South Africa (1928–1994).svg
Flag of South Africa, also known as the Oranje-Blanje-Blou, used from 31 May 1928 until 27 April 1994
Flag of Sweden.svg
Author/Creator: unknown, Licence: PD
Flag of Thailand.svg
The national flag of Kingdom of Thailand since September 2017; there are total of 3 colours:
  • Red represents the blood spilt to protect Thailand’s independence and often more simply described as representing the nation.
  • White represents the religion of Buddhism, the predominant religion of the nation
  • Blue represents the monarchy of the nation, which is recognised as the centre of Thai hearts.
Flag of the United Kingdom.svg
Author/Creator: unknown, Licence: PD
Flag of the United States (1912-1959).svg
US Flag with 48 stars. In use for 47 years from July 4, 1912, to July 3, 1959.
Flag of Venezuela (1954–2006).svg
State Flag of Venezuela 1930-2006, New flag was introduced 13 March 2006.
State flag of Venezuela (1954–2006).svg
State Flag of Venezuela 1930-2006, New flag was introduced 13 March 2006.
Flag of Yugoslavia (1946-1992).svg
Flag of the Socialist Federal Republic of Yugoslavia (1946-1992).
The design (blazon) is defined in Article 4 of the Constitution for the Republic of Yugoslavia (1946). [1]
Flag of Spain (1945–1977).svg
Author/Creator: SanchoPanzaXXI, Licence: CC BY-SA 4.0
Flag of Spain during the Spanish State. It was adopted on 11 October 1945 with Reglamento de Banderas Insignias y Distintivos (Flags, Ensigns and Coats of Arms Bill)
Flag of Romania (1952-1965).svg

Flag of Romania (24 September 1952 - 21 August 1965)

Flag of Romania (1965-1989) (construction).png

Construction sheet of the Flag of Romania as depicted in Decree nr. 972 from 5 November 1968.

  • l = 2/3 × L
  • C = 1/3 × L
  • S = 2/5 × l
Flag of the Mongolian People's Republic (1945–1992).svg
Flag of People's Republic of Mongolia 1945-1992
Flag of North Vietnam (1955–1975).svg
Flag of former North Vietnam (from 1955 until reunification with South Vietnam in 1976)
Flag of Malaya.svg
Author/Creator: No machine-readable author provided. Nightstallion assumed (based on copyright claims)., Licence: CC BY-SA 2.5
Flag of the Federation of Malaya.
This flag should not be confused with the flag of Malaysia. The flag of Malaya has 11 stripes and 11 spokes in the star. The flag of Malaysia has 14 stripes and 14 spokes.
Flag of Kenya (1921–1963).svg
Author/Creator: Oren neu dag, Licence: CC BY-SA 3.0

Flag of Colonial Kenya, between the years 1921-1963.

Made out of Government Ensign of the United Kingdom.svg
Flag of the Federation of Rhodesia and Nyasaland (1953–1963).svg
Flag of the Federation of Rhodesia and Nyasaland
State Flag of Iran (1964).svg
New Version of ا:Image:Lionflag.svg with a cleaner emblem and the correct ratio.
Flag of the Uganda Protectorate.svg
Author/Creator: Sodacan, Licence: CC BY-SA 3.0
Flag and government ensign of the Uganda Protectorate (1914-1962).

FIAV 110010.svg
Logo vom Internationalen Geophysikalischen Jahr